- Регистрация
- 27 Авг 2018
- Сообщения
- 39,646
- Реакции
- 617,156
- Тема Автор Вы автор данного материала? |
- #1
Python has become a required skill for data science, and it's easy to see why. It's powerful, easy to learn, and includes the libraries like Pandas, Numpy, and Scikit that help you slice, scrub, munge, and wrangle your data. Even with a great language and fantastic tools though, there's plenty to learn!
Exploring Data with Python is a collection of chapters from three Manning books, hand-picked by Naomi Ceder, the chair of the Python Software Foundation. This free eBook starts building your foundation in data science processes with practical Python tips and techniques for working and aspiring data scientists. In it, you'll get a clear introduction to the data science process. Then, you'll practice using Python for processing, cleaning, and exploring interesting datasets. Finally, you'll get a practical demonstration of modelling and prediction with classification and regression. When you finish, you'll have a good overview of Python in data science and a well-lit path to continue your learning.
DOWNLOAD: